论文部分内容阅读
为实现软件的自适应,针对复杂多变的运行环境,提出一个基于隐Markov模型(HMM)的自适应软件决策模型.首先运用高斯混合模型(GMM)对初始环境进行分类,然后使用softmax回归对感知环境进行归类划分处理,最后利用HMM代替人工干预进行软件决策.实验结果表明,该自适应软件模型在感知环境发生变化的条件下,能很好地实现软件自适应决策.