论文部分内容阅读
对空气中有害物质(例如PM10)的浓度进行预测具有重要的现实意义,但绝大多数情况下,这类数据具有不均衡、在线贯序到达的特点,利用传统监督学习方法较难以实现快速、有效的预测。为解决该问题,提出了一种基于主曲线的PM10预测方法,建立在2010年到2012年PM10的模型,拟合得到相应的参数,最终得到主曲线预测模型,并通过大量实验分别设定不同浓度PM10相应的阈值。研究表明,基于主曲线的PM10预测模型预测速度快、误差低,同时网络结构更加紧凑。