拓扑空间上的KKM定理,不动点定理,广义变分不等式

来源 :系统科学与数学 | 被引量 : 0次 | 上传用户:xyzsoft
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
引进没有任何凸结构的拓扑空间上的广义R-KKM映射的定义并利用古典的KKM原理得到一般拓扑空间上的KKM型定理以及若干个变形结果,然后作为应用给出了非紧的拓扑空间上不动点定理和广义变分不等式解的存在性定理.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
研究一类边界条件中有谱参数的不连续的Sturm-Liouville问题.首先在Hilbert空间中定义了一个自共轭的线性算子A,使得该类Sturm-Liouville问题的特征值与算子A的特征值相一致.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
研究了多目标广义对策问题,通过Brouwer-Schauder-Tychonoff不动点定理,建立了弱Pareto-Nash均衡点的存在性结果,最后,通过一个例子,说明结果是新的、不能被已有的存在性结果
将非协调三角形Carey元应用于二维空间中的非线性抛物型积分微分方程.通过一些新的特殊方法和技巧,给出了有限元解的最优L模和能量模误差估计.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
不仅把Pachpatte的离散不等式推广成时滞不等式,而且把不等式中的常数项推广成连续的正函数.推广后的不等式不仅包含了更多项,且不要求函数的单调性.利用单调化技巧给出了不
给出了球面和射影平面上带根不可分地图的色和方程,从色和方程导出了球面和射影平面上带根一般不可分地图、二部地图的计数函数方程.利用色和理论,研究不同类地图的计数问题,
研究含有两个小参数的奇异摄动抛物对流扩散方程的有限差分法.应用极大模原理和障碍函数技巧,可得方程的准确解及其各阶导数的界的估计.基于准确解的有关性态,构造分片一致的
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊