论文部分内容阅读
太阳质子事件预报是空间天气预报的重要组成部分。在太阳活动预报研究中,针对开发预报方法研究问题,已有的太阳质子事件预报模型主要采用统计和神经网络的方法。为了提高预报精度和准确率,选用了支持向量机和K近邻相结合的方法(称为SVM-KNN方法)建立太阳质子事件预报模型。模型选择的预报因子除了已有质子事件预报模型选用的传统太阳活动区黑子特征参量,还加入太阳活动区磁场参量。仿真预报采用2002年和2004年的数据,结果证明采用预报模型具有较高的报准率,证明SVM-KNN方法是一种有效的太阳活动预报方法。