论文部分内容阅读
将无网格局部Petrov-Galerkin方法和改进的移动最小二乘近似相结合,求解了二维类Helmholtz方程。改进的移动最小二乘近似采用加权正交函数系作为基函数,与传统的移动最小二乘近似相比,改进的移动最小二乘近似中的系数矩阵变成了非奇异的对角矩阵,因而无需计算系数矩阵的逆。数值结果表明该方法数值精度高,收敛速度快。