论文部分内容阅读
旨在探讨GBLUP与惩罚类回归方法用于猪血液性状基因组选择的相关问题。以本实验室收集的免疫资源猪群体13个血液性状为分析对象,结合Illumina公司猪SNP60K基因芯片分型数据,以加性模型和加性-显性模型为基础,利用GBLUP和3种惩罚类回归方法(ridge、lasso与elastic-net)开展基因组选择分析。研究发现,基因组选择的准确性与性状芯片遗传力估计值呈正相关。交叉验证分析结果表明,4种方法对13个血液性状预测准确性最高的性状均是MCV(平均红细胞体积),而加性模型和加性-显性模型的预测准