论文部分内容阅读
目前的目标检测模型存在参数量多、模型体积大及检测速度慢的缺点,不能在实时场景下应用。例如,对于自动驾驶技术,不仅需要精准的检测来保障安全,还需要实现快速检测以保证车辆的实时决策。针对以上问题,提出了一种端对端的轻量级目标检测网络FGHDet。首先,针对异构卷积HetConv逐通道卷积效率低的问题,对特征图进行分组,提出了分组异构卷积GHConv(Grouping Heterogeneous Convolution);其次,将GHConv和Fire Module组合,构建了基础模块FGH Module