论文部分内容阅读
人脸分析相关应用越来越广泛,但随着高清视频影像的广泛使用,传统的基于CPU设计实现的程序已难以满足时效性要求。本文基于GPU平台实现了人脸检测和特征点定位的并行化。首先为了加速人脸检测过程,使用Nvidia的CUDA计算范式,通过"窗口级并行"和"分类器级并行"两步实现基于Haar特征的Adaboost算法;然后在人脸检测的基础上,提出一种在常量时间内获得初始模型的方法,并行实现ASM算法。与OpenCV中基于CPU的方法相比,基于GPU的本方法有一定速率提升。