基于集成多尺度LSTM的短时风功率预测

来源 :重庆大学学报 | 被引量 : 0次 | 上传用户:surfing203
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
风能作为一种无污染可再生能源,风力发电的比例在全球范围内逐年增加。针对风力发电存在出力波动大,从而导致电网电力不稳定的问题,提出基于集成多尺度长短时记忆网络(LSTM, long short-term memory)的短时风功率预测模型。利用LSTM对序列数据的特殊处理能力,集成多个基预测模型对不同尺度时间数据的预测结果,共同进行短时风功率预测。风功率的精确预测有利于电力资源的全面掌控和调度。采用中国东北地区风力发电真实数据集对模型进行验证,结果证实研究方法预测精度较高,有很好的稳定性。
其他文献
我国遥感对地观测等项目顺利实施,获取了大量时效性强、覆盖范围广、信息量丰富的遥感数据。但遥感影像智能化自动处理技术发展仍相对滞后,无法满足区域/全球大范围地物信息快速提取的需求。近年来,人们利用深度学习技术显著提高了影像特征提取成效,但由于所使用的深度学习样本数量和类型有限,对于多源遥感影像的自动解译能力仍然不足。本文面向大范围多源遥感影像地物信息智能解译需求,在分析现有样本集现状及问题的基础上,
针对盘营铁路专线、哈大铁路专线沿线沉降监测研究较少,采用InSAR技术获取了研究区地表形变信息,还对其进行了相关分析。用SBAS-InSAR对35景Sentinel-1A SAR数据进行处理,获取VV、VH极化下的年均沉降速率及沉降序列;以年均沉降速率为研究对象,进行沿线沉降特征分析及交叉验证;利用小波变换对沉降序列降噪处理,用改进BP神经网络对降噪后沉降序列预测分析。研究结果表明,研究区内高速铁