论文部分内容阅读
为探索有效的稻穗识别特征选取方法,解决基于无人机数码影像水稻产量估测中图像颜色空间各个通道或指数对水稻穗识别能力不清的问题,利用2017年和2018年沈阳农业大学超级稻成果转化基地水稻试验田无人机高清数码影像、地面小区样方内水稻穗数量等实测数据,构建了水稻穗、叶、背景的3分类图像样本库,应用最优子集选择(Best subset selection)算法分析了RGB和HSV颜色空间各个通道或指数对水稻穗的识别能力,提取适合东北粳稻稻穗图像分割的7种特征参数,以此特征为输入构建了基于BP神经网络的稻穗分