论文部分内容阅读
针对动态突变行为原始信息量较少造成的行为不易区分以及浅层结构分类算法分类正确率较低的问题,提出一种基于滑动窗特征融合的深信度网络驾驶行为识别算法。采用从手机传感器中获取的三轴加速度数据进行预处理后,利用端点检测算法确定行为切换点,通过滑动窗实时提取时间序列信息并计算序列片段的时频域特征,选取有效特征后,融合原始行为信息与特征建立完整时间序列段作为受限玻尔兹曼机的输入,优化预设参数的多隐层受限玻尔兹曼机对输入端信息的特征进行提取,最终通过深信度网络(deep belief network,DBN)实现