基于树编辑距离的层次聚类算法

来源 :计算机科学与探索 | 被引量 : 0次 | 上传用户:ximage
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了识别犯罪嫌疑人伪造和篡改的虚假身份,利用树编辑距离计算个体属性相似性,证明了树编辑距离的相关数学性质,对属性应用层次编码方法,提出了一种新的基于树编辑距离的层次聚类算法HCTED(Hierarchical Clustering Algorithm Based on Tree Edit Distance).新算法通过树编辑操作使用最少的代价计算属性相似性,克服了传统聚类算法标称型计算的缺陷,提高了聚类精度,通过设定阈值对给定样本聚类.实验证明了新方法在身份识别上的准确性和有效性,讨论了不同参数对实验结果的影响,对比传统聚类算法,HCTED算法性能明显提高.新算法已经应用到警用流动人口分析中,取得了良好效果.
其他文献