论文部分内容阅读
心律失常的自动分类对心血管疾病的诊断和预防具有重要意义。传统分类方法需要对心电信号进行人工特征提取,这对分类准确度有很大的影响。针对该问题,提出一种基于二维图像与迁移卷积神经网络(TCNN)的分类方法。通过对心电信号进行格拉姆角场变换将其转换为二维图像,在保证心电图像完整性的同时,保留原始信号的时间依赖性。在此基础上,结合迁移学习的思想,设计结构简单且参数量较少的TCNN模型对心电图像进行分类。实验结果表明,该方法网络训练用时较少,并且分类总准确率达到99.82%,可实现对心律失常的有效分类。