论文部分内容阅读
针对微阵列基因表达数据高维小样本、高冗余且高噪声的问题,提出一种基于FCBF特征选择和集成优化学习的分类算法FICS-EKELM。首先使用快速关联过滤方法FCBF滤除部分不相关特征和噪声,找出与类别相关性较高的特征集合;其次,运用抽样技术生成多个样本子集,在每个训练子集上利用改进乌鸦搜索算法同步实现最优特征子集选择和核极限学习机KELM分类器参数优化;然后基于基分类器构建集成分类模型对目标数据进行分类识别;此外运用多核平台多线程并行方式进一步提高算法计算效率。在六组基因数据集上的实验结果表明,该算法不仅能