论文部分内容阅读
针对传统算法进行股票价格预测存在预测精度低和滞后性大的缺点,提出一种基于灰色GARCH模型和BP神经网络的股票价格预测模型。通过BP神经网络校正灰色GARCH模型预测残差实现股票价格的高精度预测。研究结果表明,与灰色GARCH、BP、GARCH和灰色模型相比较,本文提出的灰色GARCH-BP组合模型可以有效提高股票价格预测精度,为股票价格预测提供新的方法和途径。