论文部分内容阅读
研究Faster R-CNN目标检测网络的基本结构与训练方法;建立了机电装备状态数据集,训练了目标检测网络,一步实现了指针式仪表区域的提取、数字式仪表读数的识别以及开关、插头状态的识别;在不同视角和光照强度下对目标检测网络进行了测试,结果表明模型在不同的环境中均能保持90%以上的准确度。并以此为依据推理故障的原因,最后根据推理结果,使用基于Unity 3D软件与Hololens 2硬件开发的机电装备智能维修辅助系统来调取MR全息诱导维修信息,以指导保障人员进行操作。实验验证了系统的可用性,实验结果显