论文部分内容阅读
为解决超声乳腺肿瘤分级检测问题,从超声射频(RF)信号的角度提出了一种有效的乳腺肿瘤分级检测方法。首先,采用Shearlet变换提取乳腺超声RF信号的多尺度、多方向特征;其次,考虑Shearlet特征的高维冗余性,采用多尺度方向二值模式(MDBP)对其进行编码,在不损失特征信息的条件下降低特征维度;最后,依据医生阅片经验以及不同分级乳腺肿瘤的特征差异性,设计出适合乳腺病变分级检测的层级二叉树SVM分类器(CBT-SVM)。在928个乳腺肿瘤患者的超声RF信号上进行验证,大量结果表明,提出方法可以有效