论文部分内容阅读
The electrochemical behaviour of Al, Li, and Er were investigated by electrochemical techniques, such as cyclic voltammograms, chronopotentiometric, chronoamperograms, and open circuit chronopotentiogram on molybdenum electrodes. The results showed that the underpotential deposition of erbium on pre-deposited Al electrodes formed two Al-Er intermetallic compounds. The codeposition of Al, Li, Er occurred and formed Al-Li-Er alloys in LiCl-KCl-AlCl3 -Er2O3 melts at 773K. Different phases such as Al2Er, Al2Er3 and βLi phase of Al-Li-Er alloys were prepared by galvanostatic electrolysis and characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) indicated that Er element mainly distributed at the grain boundary. ICP analyses showed that lithium and erbium contents of Al-Li-Er alloys could be controlled by AlCl3 and Er2O3 concentration and electrochemical parameters.
The electrochemical behavior of Al, Li, and Er were investigated by electrochemical techniques, such as cyclic voltammograms, chronopotentiometric, chronoamperograms, and open circuit chronopotentiogram on molybdenum electrodes. The results showed that the under potential deposition of erbium on pre-deposited Al electrodes formed two Al-Er intermetallic compounds. The codeposition of Al, Li, Er occurred and formed Al-Li-Er alloys in LiCl-KCl-AlCl3 -Er2O3 melts at 773 K. Different phases such as Al2Er, Al2Er3 and βLi phase of Al-Li- Er alloys were prepared by galvanostatic electrolysis and characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) indicated that Er element mainly distributed at the grain boundary. ICP analyzes showed lithium and erbium contents of Al-Li-Er alloys could be controlled by AlCl3 and Er2O3 concentration and electrochemical parameters.