论文部分内容阅读
海岸带湿地具有重要的生态价值和经济开发价值,明确其时空变化特征与影响因素对于维持区域生态系统平衡和可持续发展具有重要意义。以Landsat TM/ETM+/OLI影像为基本数据源,综合利用面向对象与深度学习分类方法对1985~2015年闽东南低海拔海岸带地区的湿地信息进行提取,以揭示其时空演变特征与驱动力因素。结果表明:基于面向对象—深度学习分类方法对湿地进行信息提取,整体分类精度可达93%以上,分类结果整体性好;1985~2015年自然湿地面积呈减少趋势,人工湿地面积呈增加趋势,分别减少和增加25