论文部分内容阅读
什么是Finsler几何? Finsler几何可以是狭义的(即经典意义的), 也可以是广义的. 前者是关于(正定)Finsler空间的几何学. 这里Finsler空间大体上讲是正则的内度量空间(inner metric space), Riemann空间便是其特例. 这样我们可以看出Finsler几何就是“不作二次限制的Riemann几何”[1]. 广义Finsler几何是经典意义Finsler几何的扩展和延拓. 它体现了狭义Finsler几何的思想方法在其他领域中的应用. 广义Finsler几何包括Lagrange几何学[2](去掉齐性条件的Finsler度量的几何变分学)和semi-spray几何学(即二阶常微分方程组的几何方法[3,4] ). 近些年来, Finsler空间上陈联络和投影切丛的应用, 已将Finsler几何的研究推向了新的高潮[5]. 限于篇幅, 本文侧重于介绍和评论经典Finsler几何的内容、问题以及近期的进展.