论文部分内容阅读
协同过滤是个性化推荐系统中采用最广泛的推荐技术,但已有的方法是将用户不同时间的兴趣等同考虑,时效性不足,而且相同用户特征的用户兴趣存在着很大的相似性,针对此问题,提出一种基于用户特征和时间的协同过滤算法,使得越接近采集时间的用户兴趣,在推荐过程中具有更大的权值,并且根据用户的特征来来提高相似用户集的采集,从而提高推荐的准确性。