论文部分内容阅读
针对交互式网络电视(IPTV)用户报障因素复杂、故障样本相对贫瘠的问题,基于相关向量机(RVM)高稀疏性的建模特点提出一种结合RVM参数优化和混合采样的IPTV用户报障预测方法(LFOA-HSRVM)。该方法将IPTV的用户报障预测视为一个针对非均衡数据集的二分类问题,克服了传统RVM算法在处理非均衡数据时决策边界偏向少数类样本的问题。实验表明,与其他相关算法相比,该算法的少数类分类性能和总体分类性能均有较大提升,能获得更好的报障预测效果。