Efficiency of seed bio-priming technique for healthy mungbean productivity under terminal drought st

来源 :农业科学学报(英文) | 被引量 : 0次 | 上传用户:a574150767
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Recently, drought-induced damaging impact in reducing the crop growth and development is drastically ranked at the top under various abiotic stresses. And especially water stress at the reproductive growth stages termed as terminal drought has become a severe threat for mungbean productivity. To mitigate the drought stress condition, “bio-priming” has emerged as a newly agronomic and sustainable technique in improving the mungbean production. A 2-year field study during Kharif season 2017–2018 was conducted to investigate the efficacy of rhizobacteria seed priming in mungbean (AZRI mung-06), at Agronomic Research Area, Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan. The experiment comprised two factors containing FA (seed treatments, control (dry seeds), hydro-priming, silicon (Si)-priming, and bio-priming (mixture strains of Pseudomonas fluorescens+Rhizobium phaseoli)) and FB (irrigation water-regimes at various growth stages including leaf formation (L), stem elongation (S)+flowering (F)+pod formation (P) containing treatments are normal irrigation (IL+S+F+P) and terminal drought stress (IF+P)). All the treatments were arranged in randomized complete block design under factorial design and were replicated thrice. Results indicated that the exposure of drought stress at flowering and pod formation stages hampered the morpho-physiological growth and yield of mungbean. Nevertheless, seed priming treatments particularly bio-priming were effective in alleviating the detrimental effects of drought stress. Bio-priming significantly increased the yield and yield components (seeds/plant, 1000-grain weight and harvest index) of mungbean and regulated the activities/levels of antioxidants (superoxide dismutase, catalase, peroxidase, ascorbic acid, and total phenolics) under drought stress. Compared with the control, bio-priming increased the seed yield of mungbean by 8–12% under normal as well as drought stress conditions during both years of study. Bio-priming also improved the nutrient uptake behavior followed by Si- and hydro-priming treatments under terminal drought stress. The study emphasized the effectiveness of bio-priming as dual seed treatment method may be helpful for vigorous germination of mungbean production along with plant tolerance against terminal drought stress. Among the various treatments, plants treated with bio-priming technique compensated the grain yield due to having strong antioxidant defense system and better nutrient uptake behaviour under terminal drought stress. Economic analysis also concluded that bio-priming is the easiest, cost-effective, friendly, and sustainable approach for the maximization of the mungbean production.
其他文献
Plant natural products including alkaloids, polyphenols, terpenoids and flavonoids have been reported to exert anticancer activity by targeting various metaboli
Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world, which results in huge economic lo
In order to create novel germplasm resources for breeding heat tolerant variety, we transferred a dominant allele OsHTAS, previously characterized and cloned fr