论文部分内容阅读
针对大规模多层文本分类训练样本获取代价高、类别分布不均衡等问题,提出并比较几种基于类别层次结构的大规模多层文本分类样本扩展策略,即利用类别层次体系中蕴含的类别名称、描述以及类别间的层次结构关系,从内涵和外延两方面入手构造或扩展类别训练样本。在首次大规模中文新闻信息多层分类评测数据集上,基于外延的局部样本扩展策略取得较好的性能。参测系统在第一级类别和第二级类别上宏平均F1分别为0.8413和0.7139,在10个参赛系统中位列第二。