论文部分内容阅读
卷积神经网络(convolutional neural network,CNN)算法是目前进行裂缝图像识别的常用方法。但目前仍存在卷积神经网络过于复杂、训练参数多、设备配置要求高和检测实时性低等问题。针对以上问题,本文提出一种基于轻量化CNN的混凝土表面裂缝识别方法。通过搭建轻量化全卷积神经网络(light-weight full convolutional neural network,LFNet)解决目前经典的卷积神经网络中训练参数过多的问题;采用基于高斯梯度变化的阈值分权法,对存在裂缝的图像进