论文部分内容阅读
当前植物叶片表皮气孔计数多使用人工计数,该方法耗时费力,且准确性有限,为了使气孔检测这一问题变的简单快速,需要训练出基于目标检测的深度学习模型自动检测植物气孔,提出一种依据Faster R-CNN的活体植株叶片下表皮气孔快速检测新方法。该方法以深度卷积神经网络为基础,以现有Faster R-CNN为原型,实现了对活体叶片气孔的快速检测与统计计数,并得到了气孔的密度值。分别采用两种倍率下(500 X,1 000 X)共1 000张气孔图像数据组成500 X、1 000 X和两种倍率的混合共3类数据集进