论文部分内容阅读
【目的】为了减小三维重建的重投影误差,提出一种改进的SIFT(Scale Invariant Feature Transform)算法。【方法】首先使用SIFT提取和匹配特征点,将这些匹配点作为归一化互相关(Normalized Cross-correlation,NCC)的初始匹配对;然后使用特征点的主方向对局部图像进行旋转校正;最后计算该初始匹配对NCC系数并将相似地貌中的误配点剔除。【结果】该方法剔除了大量的误配点,提高了特征点的正确匹配率和重建结果的精度。【结论】改进的SIFT算法能够得到更