论文部分内容阅读
针对基于非负矩阵分解(NMF)的高光谱解混存在的初始化与"局部极小"等问题,提出一种基于马尔可夫随机场(MRF)的空间相关约束NMF线性解混算法(MRF-NMF)。首先,通过基于最小误差的高光谱信号识别(Hy Sime)法估算端元数量,同时利用顶点成分分析(VCA)和全约束最小二乘法(FCLS)初始化端元矩阵与丰度矩阵;其次,利用MRF模型建立描述地物空间分布规律的能量函数,以此描述地物分布的空间相关特征;最后,将基于MRF的空间相关约束函数与NMF标准目标函数以交替迭代的形式参与解混,得出高光谱数