含镍生铁在转炉冶炼含镍钢中的应用

来源 :炼钢 | 被引量 : 0次 | 上传用户:sheng285292970
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
结合国内某钢厂的生产实践,对含镍生铁在转炉冶炼含镍钢种的应用进行了热力学分析和动力学研究.热力学计算表明,不论是在标准状态下还是在转炉冶炼实际条件下,通过含镍铁块合金化进入铁液或钢液中的镍元素都不可能被氧化形成氧化镍.转炉冶炼X80-1钢表明,通过测定含镍铁块的熔化速率试验,25 mm厚的含镍铁块熔化速度比废钢熔化速度快30 s;转炉半钢成分检验结果表明含镍铁块加入转炉吹炼5 min后可以完全熔化.同时对转炉终渣成分进行扫描电镜以及XRF检测,未发现氧化镍,含镍铁块合金化镍的收得率接近100%.
其他文献
在低合金高强钢中,形成大量的针状铁素体是满足高强度和高韧性的主要方法.影响针状铁素体体积分数的几个关键因素在不同的文献均有体现,也有综述文献总结了针状铁素体形核机制和有利于形核的夹杂物特征,但是并没有系统地总结各因素变化带来的影响.本文总结了奥氏体晶粒尺寸、冷却速率、夹杂物成分、夹杂物尺寸的变化对针状铁素体体积分数的影响.得出结论如下:奥氏体晶粒尺寸为100~200μm、冷却速率为5~10℃/s、夹杂物尺寸为1~2μm和(Ti、Mg、Zr)Ox夹杂物均有利于促进针状铁素体形核.
KR铁水脱硫工艺(又称机械搅拌法)因其较优的反应动力学条件,及脱硫效率高、脱硫效果稳定和脱硫成本低等优点,广泛应用于国内外各大钢铁企业,逐渐成为铁水预处理脱硫的首选工艺.综述了近年来提高KR机械搅拌法铁水脱硫动力学条件方面的研究成果,通过了解国内外脱硫反应动力学条件的发展动态,为KR动力学条件的改进或优化提供参考.
高效、便捷的视觉显示终端(Visual Display Terminal,VDT)办公模式逐渐成为社会主流,VDT办公高强度、超负荷的工作节奏容易使办公人员在生理上和心理上产生疲劳,疲劳得不到及时缓解会引发健康的问题.通过对9家VDT办公模式的公司进行调研,发现办公人员工作久坐和疲劳的现象普遍,疲劳表现最显著的身体部位为眼部>腰部>肩部.而办公公共空间缺乏私密性和针对缓解疲劳的设计,不能满足大部分办公人员有效地进行工间休息来缓解疲劳的需求.结合调研结论,基于恢复性环境理论总结出办公恢复性环境特征,进一步提
炼钢厂产能提升及大废钢比生产模式转变,对钢包扩容使用提出了要求.通过模型化与数值计算对钢包扩容后温度场、应力场变化进行了分析,扩容后钢包达到稳态循环后包壁外表温度最大值280℃,渣线位置达到最大值310℃,处于安全范围.包壁工作层厚度减薄30 mm,钢包有效容量由277 t增加到286 t,月产能增加1.8万t,促进炼钢产能提升的同时,降低了动力费用、耐材费用、人工费用,实现年经济效益约1400万元.
将制备的Fe-Si+CaO复合粉剂包芯线加入钢液,研究其对去除夹杂物的作用.结果表明:复合粉剂包芯线能够加入到钢液,其中粉剂可以扩散分布到钢液中,与钢液中夹杂物形成硅钙铝复合夹杂物,外观呈球形,容易聚集上浮排出钢液.工业应用中,复合粉剂包芯线在不影响钢种成分控制的情况下,能够起到去除夹杂物、净化钢液的作用,应用复合粉剂的罐次铸坯T.O含量、夹杂物面积分数、夹杂物数密度显著下降,残留在铸坯中的夹杂物尺寸绝大多数小于4μm,未出现大于10μm夹杂物.
针对传统包晶钢保护渣在使用过程中的不足,确保保护渣传热性能的前提下兼顾润滑效果,为小方坯包晶钢的连铸高效稳定生产提供新的技术方案.通过保护渣成分设计优化,在原有保护渣的基础上适当降低碱度和黏度,引入LiO2和过渡族金属氧化物(Fe2 O3、MnO),并降低F含量,改善了保护渣在高拉速生产条件下的适用性及稳定性.在一系列保护渣性能关联性、兼容性设计优化及使用条件改进下,高拉速生产包晶钢小方坯铸坯探伤合格率由不足35% 提升至93% 以上,实现了小方坯包晶钢连铸的连续高效、高质量生产.
针对单流中间包连铸过程中流动状态不佳、钢液夹杂物含量较高等问题,提出了中间包控流装置的优化方案,采用数值模拟和水模试验研究了不同控流装置情况下中间包钢液流动行为及平均停留时间分布等特征.结果表明,最佳控流装置参数:堰距长水口距离1090 mm,堰高度180 mm,坝堰间距260 mm,高坝高度340 mm时中间包钢液流场优化及夹杂物去除效果最佳.对比原方案中间包,优化后中间包钢液平均停留时间和活塞区均有所增加,死区降低7.14%;夹杂物平均去除率达到68.7%,较原方案平均去除率提高6.6%.