论文部分内容阅读
摘要:本文介绍丹麦ROVSING Dynamics公司OPENpredictorTM旋转机械设备故障诊断预警系统的组成,功能,使用效果。
关键词:汽轮发电机组;故障诊断;预警;分析
中图分类号:TB857+.3 文献标识码:A 文章编号:
1引言
汽轮机发电机组是高速旋转的机械设备,机械设备的故障一般都有前期症状,而故障诊断预警系统能提前预知,从而防止设备故障进一步恶化,对设备有针对性地计划检修,减少了汽轮机发电机组重大事故发生和机组跳闸对社会供电的影响。同时故障诊断预警系统对汽轮机发电机组机械故障具有诊断和分析功能,能具体分析出故障的原因所在,为专业人员分析故障提供重要的依据。某厂#3汽轮发电机组选用丹麦ROVSING Dynamics公司的OPENpredictorTM故障诊断预警系统,本文介绍该系统的应用,同时为其它汽轮发电机组故障分析提供借鉴。
2系统综述
OPENpredictorTM故障诊断预警系统通过安装在设备上的传感器,将探测到的过程信息与故障库中的故障种类和程度进行类比。一旦探测到故障,设备或部件的故障位置和诊断信息就会以清晰的文本形式呈现给相关人员。此外,故障的严重程度、何时需要维修以及何时会发展成为重大事故,都由预测系统根据故障症状进行评估。同时给故障诊断专家提供了丰富的数学模型和诊断工具。
OPENpredictorTM系统提供了广泛的故障类型库,加上独特的信号分析功能和相对完善的气动热力模型,可以完全自动地实现故障预警功能。并对设备健康状态进行评估,实现设备状态检修。
3系统组成及测点分布3.1系统组成系统主要由信号处理单元(SPU)、OPENpredictorTM系统服务器、工作站组成。SPU采集汽轮发电机组状态参数并做数据处理和分析,结果通过以太网提供给OPENpredictorTM系统服务器使用,工作人员通过工作站可视画面对机组整体监视,同时OPENpredictorTM系统服务器数据通过MIS网的内外网连接的FTP服务器每24小时(可设定)打包一次数据传输到远程服务中心,利用远程服务中心的外来力量对机组状态进行分析。系统的组成图1所示。
图1:系统组成图
3.2数据采集测点分布
下面图2所示是系统所有传感器的安装位置:
图2:测点分布图
表1:测点清单
4系统实现功能
OPENpredictorTM旋转机械预警专家系统在本工程中诊断的汽轮发电机组故障库见表2
说明:AS:自动频谱、CPB:恒定百分比带宽、DC:电流、OTA:次序跟踪分析、SCL:轴中线、SED=选择性包络检波、SMD:同步调制探测、Spp:峰-峰值信号、Temp:温度
表2:汽轮发电机组故障库
4.1设备健康评估
为了达到生产时间最大化的目的,就必须合理安排机组维护。OPENpredictor™能够监控机组全部状态,并定期总结机组的健康状况,指导技术人员合理安排机组检修。
4.2早期故障探测
采用“故障选择信号”方法在早期就能够探测出故障,通过连续监测潜在的故障症状,对机械健康状态进行评估。每一个类型的机械都有它独特的故障类型,OPENpredictor™预测维护信息系统采用覆盖最广范围的故障选择信号对故障进行检测。
为了进一步增加故障探测灵敏度,依据运行情况对信号进行分类。采用信号比照方法,减少错误报警的次数、增加故障预测的可靠性。
4.3早期故障诊断
早期故障诊断的模型采用了信号对照的结果,还采用了其它来源的信号:轴承温度、机组功率等其它相关的参数,综合计算,将清晰的结论呈现给技术人员。AutoDiagnosis™信息窗口为技术人员提供机械部件、辨别故障、预计维修时间和维护建议等清楚的信息。技术人员根据信息决定是否对机组进行维护。预测自诊断(PAD)故障项目有:轴承不稳定(油膜振荡)、轴承磨损(轴向的)、轴承磨损(径向的)、叶片现象(共振,结构改变等等)、转子不对中、转子不对中、转子磨擦、转子不平衡、转子不平衡、发电机定子线圈松动。
4.4故障發展趋势预测
“预测”运算法则通过推算故障信号的历史数据,确定故障发展至预定报警水平所需的时间。
4.5瞬时故障诊断
对机组运行突发的故障进行诊断,协助技术人员快速准确查找故障原因,并给出处理方案。瞬时自动诊断(IAD)故障项目有:转子轴向移位、轴承不稳定(油膜振荡)IAD、外部强烈振动、转子弯曲、转子裂纹IAD、转子磨损IAD低频、叶片磨损、径向轴承磨损、结构膨胀。
4.6远程故障诊断
OPENpredictorTM旋转机械设备预警系统每天打包数据传输到远程服务中心,实现专家远程诊断。
5系统应用效果(实例)
系统自2011年01月份开始发现机组轴系不对中故障,自动产生诊断报警并给出预测(如图3),说明机组轴系的不对中故障发展已比较严重。2011年3月17日系统又再次发出低压转子不对中的报警,显示低压转子未对中的症状已发展到比较严重的程度,提示应检查轴承及联轴器。
图3:转子不对中故障提示
2011年3月20日国外专家通过远程获取的数据,对低压缸转子不对中故障诊断分析,认为轴承可能出现问题。同时#1和#2轴X方向轴振动在2011年3月5日自动频谱图(图4)中显示除一倍频分量振动较大外,还存在约0.5倍频分量的振动,显示轴承有碰磨故障现象。
图4:#1和#2轴X方向轴振动自动频谱图
2011年4月4日在机组计划停机过程中发现#1轴X方向振动突然变大,惰走至转速150rpm左右时,#2轴承金属温度在短时间内由55℃突然直升到113℃左右,超出高限105℃,#2轴承可能磨损。
根据数据回顾及信号图谱分析,机组低压缸部分存在转子不对中故障,故障诊断系统也明确发出自动诊断报警。专家建议对#2、#3轴承进行检修,并对高中压转子、低压转子及发电机转子进行找中心,核查整个轴系各轴颈扬度值。
检查情况:解体#2轴承发现钨金轻度磨损;#2轴承标高偏高,汽轮机整个轴系扬度发生变化,导致转子不对中故障。同时#3轴承载荷减少,#2轴承载荷加重,低转速下,#2轴承油膜稳定性差,油膜无法正常形成,最终造成#2轴承磨损。
处理情况:对#2轴承磨损面进行修复,#2轴承标高降低0.05mm,减少#2轴承载荷,并对轴系重新对中。
经此次检修后,不再重复出现转子不对中故障,机组安全运行,成功地防止了故障进一步扩大。
6结束语
OPENpredictorTM故障诊断预警系统从投用以来,能很好地预测汽轮发电机组早期故障,并对设备进行健康评估,从而实现预知性维修,有效地降低了故障损失和设备维修费,尽可能防止机组故障跳闸。对已发生的故障能有效地分析出故障原因,并提出解决方法。故障诊断预警系统是机组实现状态检修的必要工具。
关键词:汽轮发电机组;故障诊断;预警;分析
中图分类号:TB857+.3 文献标识码:A 文章编号:
1引言
汽轮机发电机组是高速旋转的机械设备,机械设备的故障一般都有前期症状,而故障诊断预警系统能提前预知,从而防止设备故障进一步恶化,对设备有针对性地计划检修,减少了汽轮机发电机组重大事故发生和机组跳闸对社会供电的影响。同时故障诊断预警系统对汽轮机发电机组机械故障具有诊断和分析功能,能具体分析出故障的原因所在,为专业人员分析故障提供重要的依据。某厂#3汽轮发电机组选用丹麦ROVSING Dynamics公司的OPENpredictorTM故障诊断预警系统,本文介绍该系统的应用,同时为其它汽轮发电机组故障分析提供借鉴。
2系统综述
OPENpredictorTM故障诊断预警系统通过安装在设备上的传感器,将探测到的过程信息与故障库中的故障种类和程度进行类比。一旦探测到故障,设备或部件的故障位置和诊断信息就会以清晰的文本形式呈现给相关人员。此外,故障的严重程度、何时需要维修以及何时会发展成为重大事故,都由预测系统根据故障症状进行评估。同时给故障诊断专家提供了丰富的数学模型和诊断工具。
OPENpredictorTM系统提供了广泛的故障类型库,加上独特的信号分析功能和相对完善的气动热力模型,可以完全自动地实现故障预警功能。并对设备健康状态进行评估,实现设备状态检修。
3系统组成及测点分布3.1系统组成系统主要由信号处理单元(SPU)、OPENpredictorTM系统服务器、工作站组成。SPU采集汽轮发电机组状态参数并做数据处理和分析,结果通过以太网提供给OPENpredictorTM系统服务器使用,工作人员通过工作站可视画面对机组整体监视,同时OPENpredictorTM系统服务器数据通过MIS网的内外网连接的FTP服务器每24小时(可设定)打包一次数据传输到远程服务中心,利用远程服务中心的外来力量对机组状态进行分析。系统的组成图1所示。
图1:系统组成图
3.2数据采集测点分布
下面图2所示是系统所有传感器的安装位置:
图2:测点分布图
表1:测点清单
4系统实现功能
OPENpredictorTM旋转机械预警专家系统在本工程中诊断的汽轮发电机组故障库见表2
说明:AS:自动频谱、CPB:恒定百分比带宽、DC:电流、OTA:次序跟踪分析、SCL:轴中线、SED=选择性包络检波、SMD:同步调制探测、Spp:峰-峰值信号、Temp:温度
表2:汽轮发电机组故障库
4.1设备健康评估
为了达到生产时间最大化的目的,就必须合理安排机组维护。OPENpredictor™能够监控机组全部状态,并定期总结机组的健康状况,指导技术人员合理安排机组检修。
4.2早期故障探测
采用“故障选择信号”方法在早期就能够探测出故障,通过连续监测潜在的故障症状,对机械健康状态进行评估。每一个类型的机械都有它独特的故障类型,OPENpredictor™预测维护信息系统采用覆盖最广范围的故障选择信号对故障进行检测。
为了进一步增加故障探测灵敏度,依据运行情况对信号进行分类。采用信号比照方法,减少错误报警的次数、增加故障预测的可靠性。
4.3早期故障诊断
早期故障诊断的模型采用了信号对照的结果,还采用了其它来源的信号:轴承温度、机组功率等其它相关的参数,综合计算,将清晰的结论呈现给技术人员。AutoDiagnosis™信息窗口为技术人员提供机械部件、辨别故障、预计维修时间和维护建议等清楚的信息。技术人员根据信息决定是否对机组进行维护。预测自诊断(PAD)故障项目有:轴承不稳定(油膜振荡)、轴承磨损(轴向的)、轴承磨损(径向的)、叶片现象(共振,结构改变等等)、转子不对中、转子不对中、转子磨擦、转子不平衡、转子不平衡、发电机定子线圈松动。
4.4故障發展趋势预测
“预测”运算法则通过推算故障信号的历史数据,确定故障发展至预定报警水平所需的时间。
4.5瞬时故障诊断
对机组运行突发的故障进行诊断,协助技术人员快速准确查找故障原因,并给出处理方案。瞬时自动诊断(IAD)故障项目有:转子轴向移位、轴承不稳定(油膜振荡)IAD、外部强烈振动、转子弯曲、转子裂纹IAD、转子磨损IAD低频、叶片磨损、径向轴承磨损、结构膨胀。
4.6远程故障诊断
OPENpredictorTM旋转机械设备预警系统每天打包数据传输到远程服务中心,实现专家远程诊断。
5系统应用效果(实例)
系统自2011年01月份开始发现机组轴系不对中故障,自动产生诊断报警并给出预测(如图3),说明机组轴系的不对中故障发展已比较严重。2011年3月17日系统又再次发出低压转子不对中的报警,显示低压转子未对中的症状已发展到比较严重的程度,提示应检查轴承及联轴器。
图3:转子不对中故障提示
2011年3月20日国外专家通过远程获取的数据,对低压缸转子不对中故障诊断分析,认为轴承可能出现问题。同时#1和#2轴X方向轴振动在2011年3月5日自动频谱图(图4)中显示除一倍频分量振动较大外,还存在约0.5倍频分量的振动,显示轴承有碰磨故障现象。
图4:#1和#2轴X方向轴振动自动频谱图
2011年4月4日在机组计划停机过程中发现#1轴X方向振动突然变大,惰走至转速150rpm左右时,#2轴承金属温度在短时间内由55℃突然直升到113℃左右,超出高限105℃,#2轴承可能磨损。
根据数据回顾及信号图谱分析,机组低压缸部分存在转子不对中故障,故障诊断系统也明确发出自动诊断报警。专家建议对#2、#3轴承进行检修,并对高中压转子、低压转子及发电机转子进行找中心,核查整个轴系各轴颈扬度值。
检查情况:解体#2轴承发现钨金轻度磨损;#2轴承标高偏高,汽轮机整个轴系扬度发生变化,导致转子不对中故障。同时#3轴承载荷减少,#2轴承载荷加重,低转速下,#2轴承油膜稳定性差,油膜无法正常形成,最终造成#2轴承磨损。
处理情况:对#2轴承磨损面进行修复,#2轴承标高降低0.05mm,减少#2轴承载荷,并对轴系重新对中。
经此次检修后,不再重复出现转子不对中故障,机组安全运行,成功地防止了故障进一步扩大。
6结束语
OPENpredictorTM故障诊断预警系统从投用以来,能很好地预测汽轮发电机组早期故障,并对设备进行健康评估,从而实现预知性维修,有效地降低了故障损失和设备维修费,尽可能防止机组故障跳闸。对已发生的故障能有效地分析出故障原因,并提出解决方法。故障诊断预警系统是机组实现状态检修的必要工具。