论文部分内容阅读
Influence of thermal-mechanical properties on the features of the panda polarization-maintaining optical fiber (PMF-) in fabrication process is studied in detail by finite element method (FEM). The stress birefringence is 2.13443×10-4 obtained by the static analysis and 2.1269×10-4 by dynamic analysis. The difference in simulation by two methods is around 0.4%. The non-uniformity of stress birefringence in the fiber core is about 1.6%. Predicted results demonstrate that effect of the thermal conductive parameter on fiber thermal stress dominates. The high and uniform stress birefringence in the fiber core is obtained by appropriately selecting suitable stress region area and position.
Influence of thermal-mechanical properties on the features of the panda polarization-maintaining optical fiber (PMF-) in fabrication process is studied in detail by finite element method (FEM). The stress birefringence is 2.13443 × 10-4 obtained by the static analysis The difference in simulation by two methods is around 0.4%. The non-uniformity of stress birefringence in the fiber core is about 1.6%. Predicted results demonstrate that effect of the thermal conductive parameter on fiber thermal stress dominates. The high and uniform stress birefringence in the fiber core is obtained by suitably selecting suitable stress region area and position.