论文部分内容阅读
An ultra-low specific on-resistance(R_(on,sp)) integrated silicon-on-insulator(SOI) double-gate triple RESURF(reduced surface field) n-type MOSFET(DG T-RESURF) is proposed.The MOSFET features two structures: an integrated double gates structure(DG) that combines a planar gate with an extended trench gate,and a p-type buried layer(BP) in the n-type drift region.First,the DG forms dual conduction channels and shortens the forward current path,so reducing R_(on,sp).The DG works as a vertical field plate to improve the breakdown voltage (BV) characteristics.Second,the BP forms a triple RESURF structure(T-RESURF),which not only increases the drift doping concentration but also modulates the electric field.This results in a reduced R_(on,sp) and an improved BV.Third,the extended trench gate and the BP linked with the p-body region reduce the sensitivity of the BV to position of the BP.The BV of 325 V and R_(on,sp) of 8.6 mΩ·cm~2 are obtained for the DG T-RESURF by simulation. R_(on,sp) of DG T-RESURF is decreased by 63.4%in comparison with a planar-gate single RESURF MOSFET(PG S-RESURF),and the BV is increased by 9.8%.
An ultra-low specific on-resistance (R_ (on, sp)) integrated silicon-on-insulator (SOI) double-gate triple RESURF (reduced surface field) n-type MOSFET (DG T-RESURF) features two structures: an integrated double gates structure (DG) that combines a planar gate with an extended trench gate, and a p-type buried layer (BP) in the n-type drift region. First, the DG forms dual conduction channels and shortens the forward current path, so reducing R_ (on, sp). The DG works as a vertical field plate to improve the breakdown voltage (BV) characteristics. Second, the BP forms a triple RESURF structure (T-RESURF), which not only increases the drift doping concentration but also modulates the electric field. This results in a reduced R_ (on, sp) and an improved BV.Third, the extended trench gate and the BP linked with the p-body region reduce the sensitivity of the BV to position of the BP. BV of 325 V and R_ (on, sp) of 8.6 mΩ · cm ~ 2 are obtained for DG T-RESURF by simulation. R_ (on, sp) of DG T-RESURF is decreased by 63.4% in comparison with a planar-gate single RESURF MOSFET (PG S-RESURF), and the BV is increased by 9.8%.