论文部分内容阅读
Hydrogenated amorphous silicon (a-Si:H) thin films were deposited by plasma-enhanced vapor deposition (PECVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scattering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient in a-Si:H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous network of a-Si:H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.
Hydrogenated amorphous silicon (a-Si: H) thin films were deposited by plasma-enhanced vapor deposition (PECVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scattering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient In a-Si: H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous networks of a-Si: H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.