论文部分内容阅读
目的:观察七氟醚预处理对缺血再灌注大鼠心肌活性氧以及一氧化氮(NO)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)、过氧化氢酶(CAT)活性的影响,进一步探讨活性氧在七氟醚预处理减轻心肌缺血再灌注损伤中的作用。方法:60只SD大鼠随机分为8组。在体用2%七氟醚预处理30 min后结扎冠状动脉前降支30 min,然后再灌注120 min。以心肌梗死面积和凋亡指数反映心肌损伤情况,心肌梗死面积用氯化三苯基四氮唑染色显示,细胞凋亡用TUNEL染色显示。活性氧用活性氧荧光探针二氢乙啶测量。使用活性氧清除剂N-(2-巯基丙酰基)甘氨酸(2-MPG)以及一氧化氮合酶抑制剂Nω-硝基-L-精氨酸甲酯(L-NAME)作为阻滞剂,用酶标仪测定心肌匀浆的NO、SOD、GPx和CAT活性,并进一步分析阻断活性氧及NO产生对七氟醚减轻心肌缺血再灌注损伤的影响。结果:与对照组比较,七氟醚预处理在缺血再灌注前诱导活性氧产生(12.0±0.8 vs2.6±0.5,P<0.05),在缺血再灌注后减少活性氧产生(16.2±0.9 vs 24.9±1.3,P<0.05);在缺血再灌注前,2-MPG减少七氟醚预处理心肌活性氧产生(5.1±0.7 vs 12.0±0.8,P<0.05),在缺血再灌注后2-MPG+七氟醚预处理组与缺血再灌注组比较无显著差别(24.9±1.4 vs 24.9±1.3,P>0.05);与对照组比较,七氟醚预处理同样诱导NO产生(34.5±3.2 vs 15.9±1.4,P<0.05),增加SOD(1.5±0.5 vs 0.6±0.2,P<0.05)、GPx(22.8±2.5 vs12.7±2.2,P<0.05)和CAT(15.5±1.8 vs 11.2±1.4,P<0.05)的活性;2-MPG消除了七氟醚对NO、SOD、CPx和CAT的诱导作用和对缺血再灌注心肌的保护作用;L-NAME同样消除七氟醚预处理对SOD、GPx和CAT的诱导作用和心肌保护作用。结论:七氟醚预处理减少心肌梗死面积和凋亡指数;七氟醚预处理产生的亚损伤量的活性氧和NO诱导缺血再灌注心肌SOD、GPx和CAT的产生,进而抑制缺血再灌注活性氧的产生和心肌损伤。
Objective: To observe the effect of sevoflurane preconditioning on myocardial reactive oxygen species, nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxidase (GPx), hydrogen peroxide Enzyme (CAT) activity, to further explore the role of reactive oxygen species in sevoflurane preconditioning to reduce myocardial ischemia-reperfusion injury. Methods: Sixty SD rats were randomly divided into 8 groups. The anterior descending coronary artery was ligated for 30 min after pretreatment with 2% sevoflurane for 30 min, then reperfused for 120 min. Myocardial infarct size and apoptotic index were used to reflect the myocardial damage. The area of myocardial infarction was measured by triphenyltetrazolium chloride staining. TUNEL staining showed that the area of myocardial infarction was increased. Reactive oxygen species with active oxygen fluorescence probe dihydrogen bromide measurement. The active oxygen scavenger N- (2-mercaptopropionyl) glycine (2-MPG) and nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) The activities of NO, SOD, GPx and CAT in myocardial homogenate were determined by microplate reader. The effects of sevoflurane on myocardial ischemia-reperfusion injury were further analyzed by blocking the production of reactive oxygen species and NO. RESULTS: Compared with the control group, sevoflurane preconditioning induced reactive oxygen species (ROS) production before ischemia reperfusion (12.0 ± 0.8 vs 2.6 ± 0.5, P <0.05) and decreased reactive oxygen species production after ischemia reperfusion (16.2 ± 0.9 vs 24.9 ± 1.3, P <0.05). Before ischemia-reperfusion, 2-MPG decreased sevoflurane preconditioning (5.1 ± 0.7 vs 12.0 ± 0.8, P <0.05) Compared with the control group, sevoflurane preconditioning also induced NO production (34.5 ± 1.4 vs 24.9 ± 1.3, P> 0.05). There was no significant difference between the 2-MPG + sevoflurane preconditioning group and the ischemia reperfusion group (P <0.05), and increased SOD (1.5 ± 0.5 vs 0.6 ± 0.2, P <0.05), GPx (22.8 ± 2.5 vs12.7 ± 2.2, P <0.05) and CAT (15.5 ± 1.8 vs 11.2 ± 1.4, P <0.05); 2-MPG eliminated the induction of NO, SOD, CPx and CAT and the protective effect of sevoflurane on myocardial ischemia-reperfusion; L-NAME also eliminated sevoflurane pretreatment Treatment of SOD, GPx and CAT induction and myocardial protection. CONCLUSIONS: Sevoflurane preconditioning can reduce myocardial infarct size and apoptotic index. Sevoflurane preconditioning with sub-damaging ROS and NO induces the production of SOD, GPx and CAT in ischemia-reperfusion myocardium and then inhibits ischemia Perfusion of reactive oxygen species and myocardial damage.