论文部分内容阅读
摘 要: 随着新课标的全面实施,高中数学教学中新课改的理念如何体现,才能适应新课改的要求,成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生解决数学问题的能力有重要的实践意义。
关键词: 高中数学 数列 教学策略 教学设计
高中数学中,数列占有很重要的地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。
一、数列教学的有效性策略简析
数列的教学应该遵循有效性原则。我们在教学中应该用先进的教学理念指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学过程就会变得相当容易。
1.对比数学问题,归纳共性特点,培养探究习惯和能力。
在认识数列时,应该同时引入函数的动态认识数列的方法,将对函数的研究方法类比到数列问题中。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点进行研究。如:从数列的特点来说,前一项与后一项之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样遵循加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生讲解清楚。
2.与其他数学知识相综合,建立数学知识体系的网络化、综合化。
数学中任何一个概念都不是独立的,在整个数学知识体系里,每个知识点都与其他结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外,还有数列与不等式、数列与导数、数列与算法等的综合运用,都要在数列教学中对学生加以讲解。
3.通过练习和小测试巩固课堂教学效果。
传统教学模式中,有一种是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,对于开拓学生的数学思路和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列a■-n。通过前面的知识的学习,我们知道,这道题目由两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是合成的,而自然数的和在学习高斯定理时就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果有多种方法,应当鼓励学生用更多的方法进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时做不出来,至少学生能够想到很多种解题方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生的解题能力得到很大的提高,知识体系也进一步得到完善。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。
二、数列部分课堂教学设计要点
课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素。
1.细致了解学生在数列学习和解决数列问题中的切身体验。
应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生都经历了近十年的数学学习经历,通过长期的学习会对某一类知识点相当敏感,而对另外一些知识点却认识模糊。有的学生擅长逻辑思维,而另外一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中应充分考虑学生的群体差异。
2.注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板。
数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解,以便激发学生的猎奇心理和探索问题的欲望。
3.重视数学史渗透,培养用数学工具解决实际问题的能力。
数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史背景。数列教学中穿插数学史知识的传授,有利于学生了解知识的来龙去脉。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学过程中要努力挖掘现实问题的应用,学以致用。当学生认识到学习的数列知识在现实生活中确实能解决很多问题的时候,学习欲望和学习效果自然而然就增强了。
4.重视数列学习中组合学习的魅力。
人以群分,物以类聚。在数学学习过程中,教师应该对不同层次的学生进行分组,这种分组的教学行为可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标、任务等精心设置,发挥团队学习的效用。
参考文献:
[1]王光明.数学教学效率论[M].天津:新蕾出版社,2006.
[2]愈国良,罗晓璐.教师教学效能感及其相关因素研究[J].北京师范大学学报,2001(1).
[3]陈振华.论教师成为教育知识的建构者[D].上海:华东师范大学,2003.
关键词: 高中数学 数列 教学策略 教学设计
高中数学中,数列占有很重要的地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。
一、数列教学的有效性策略简析
数列的教学应该遵循有效性原则。我们在教学中应该用先进的教学理念指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学过程就会变得相当容易。
1.对比数学问题,归纳共性特点,培养探究习惯和能力。
在认识数列时,应该同时引入函数的动态认识数列的方法,将对函数的研究方法类比到数列问题中。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点进行研究。如:从数列的特点来说,前一项与后一项之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样遵循加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生讲解清楚。
2.与其他数学知识相综合,建立数学知识体系的网络化、综合化。
数学中任何一个概念都不是独立的,在整个数学知识体系里,每个知识点都与其他结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外,还有数列与不等式、数列与导数、数列与算法等的综合运用,都要在数列教学中对学生加以讲解。
3.通过练习和小测试巩固课堂教学效果。
传统教学模式中,有一种是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,对于开拓学生的数学思路和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列a■-n。通过前面的知识的学习,我们知道,这道题目由两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是合成的,而自然数的和在学习高斯定理时就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果有多种方法,应当鼓励学生用更多的方法进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时做不出来,至少学生能够想到很多种解题方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生的解题能力得到很大的提高,知识体系也进一步得到完善。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。
二、数列部分课堂教学设计要点
课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素。
1.细致了解学生在数列学习和解决数列问题中的切身体验。
应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生都经历了近十年的数学学习经历,通过长期的学习会对某一类知识点相当敏感,而对另外一些知识点却认识模糊。有的学生擅长逻辑思维,而另外一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中应充分考虑学生的群体差异。
2.注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板。
数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解,以便激发学生的猎奇心理和探索问题的欲望。
3.重视数学史渗透,培养用数学工具解决实际问题的能力。
数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史背景。数列教学中穿插数学史知识的传授,有利于学生了解知识的来龙去脉。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学过程中要努力挖掘现实问题的应用,学以致用。当学生认识到学习的数列知识在现实生活中确实能解决很多问题的时候,学习欲望和学习效果自然而然就增强了。
4.重视数列学习中组合学习的魅力。
人以群分,物以类聚。在数学学习过程中,教师应该对不同层次的学生进行分组,这种分组的教学行为可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标、任务等精心设置,发挥团队学习的效用。
参考文献:
[1]王光明.数学教学效率论[M].天津:新蕾出版社,2006.
[2]愈国良,罗晓璐.教师教学效能感及其相关因素研究[J].北京师范大学学报,2001(1).
[3]陈振华.论教师成为教育知识的建构者[D].上海:华东师范大学,2003.