论文部分内容阅读
C5.0决策树算法适用于大数据集处理,特别是它的Boosting集成机器学习算法可以有效地将精度较低的"弱学习算法"提升为精度较高的"强学习算法",从而达到模型修剪与优化的目的。研究结果表明:C5.0决策树算法生成的模型可以精确地评价学生的体质健康状况(97.8%)且模型预测的泛化能力较强(98.1%)。因此,C5.0决策树算法可以用来判断影响警察院校学生体质测试成绩的关键因素,为深层挖掘相关警务数据内涵与监测提供了实证依据。