论文部分内容阅读
摘 要:概念图具有非常强的直观性和逻辑性,可以帮助学生厘清知识脉络,使其更好地了解知识概要。本文针对初中数学教学特征进行分析,讨论“概念图”在教学过程中的有效应用。
关键词:概念图;初中数学;教学实践;有效应用
中图分类号:G427 文献标识码:A 文章编号:2095-9192(2021)03-0021-02
引 言
数学是一门强调逻辑性和抽象性的学科,很多时候数字与图形之间有着千丝万缕的联系,在教学中合理使用“概念图”可以让教学内容更加直观、简单、明确,也能有效帮助学生梳理知识点,以达到最大限度提升教学效果的作用。本文从概念图的优势和特点出发,分析如何提高初中数学教学效率。
一、认识、发挥概念图的优势
初中数学教学包含大量的数字和数学符号,概念图作为构建知识体系的工具,可以将不同的数学概念逻辑性地联系起来,并标注出不同图形、数字之间的关系,其中也包含各个节点,每个节点都是一个新的数学概念,对数学框架内的知识进行总结和归类划分[1]。教师单纯依靠文字性描述或理论讲解,很难让学生形成相关思维。概念图明确指出不同知识点之间的联系和客观事实,对教师的教学实践有非常重要的现实意义,能够有效辅助教师为学生梳理知识框架结构。
二、概念图在初中数学教学中的有效应用策略
(一)概念图在预习过程中的有效应用
预习是初中数学学习过程中的重要环节,学生通过预习可以理解教师讲解的数学知识。学生可以预先进行热身,并对其中的知识点进行自主思考和分析,将思考后的内容转化为自己的理解并进行记录,结合教师课堂上的讲解更好地内化知识。因此,在学生预习前,教师可提前发放相应知识的概念图,让学生自己画出相应章节的概念图,使学生对本节内容有更清晰的理解,并受到更直观的学习指引。同时,在概念图中明确标注重点和难点,可以让学生作为参考,从而更加合理地分配预习时间,在预习过程中将自己的概念图和教师的概念图进行对比,记录下自己不理解的地方,为接下来的课堂学习做好铺垫。
例如,在学习“一元一次方程”这节课之前,教师可让学生先进行自主预习,对一元一次方程有大致的认识、理解;再让学生自己构建“一元一次方程”的概念图。需要注意的是,教师发给学生的“一元一次方程”概念图不仅要有方程的概念、等式的性质及一元一次方程的形式,更要体现解一元一次方程的步骤。最后,教师让学生将自己的概念图与教师的概念图进行对比,使学生更加深刻地认识一元一次方程,有效发挥预习的作用。
(二)概念图在课堂教学中的有效应用
初中数学具有抽象性和逻辑性的特征,其知识点也更加复杂化和多样化,学生容易将一些概念、公理、定理混淆。因此,在课堂教学中学生需要根据教师的引导进行思考,而有效利用概念图可以帮助学生很好地解决问题。概念图可以让学生找到不同知识点之前的联系,简化教学内容,教师不必逐一为学生梳理不同知识点之间的关系。学生可以根据概念图厘清本节课的教学思路,从而将更多精力放在知识拓展、能力提升等方面。同时,概念图可以帮助学生构建数学框架和梳理知识脉络。
例如,在教学“实数”时,教师可以在课堂上运用概念图,帮助学生从实数的概念、实数的分类、实数与数轴的关系、实数的有关性质和实数的运算五个方面更好地认识实数,有效帮助学生掌握实数的概念,提升学习效率。
此外,概念图在几何教学中也具有积极作用,教师可以利用概念图讲解几何例题,帮助学生更好地理解相关知识。例如,在学习“相似三角形”时,教师可以创设情境,让学生测量一座建筑物的高度:假设工作人员在水平位置上选择了A、B两点进行测量,已知A点位置在建筑物顶端方向西侧偏北30°,形成仰角60°,B点位置在离建筑物顶端方向东侧偏北50°,形成仰角30°,A、B两点之间的距离为150m,那么建筑物顶端高度是多少?针对这一问题,教师可以在黑板上画出概念图的应用图示,对这一问题情境进行延伸、拓展。这样,学生能够通过不同方式解答问题,并以概念图的方式对不同的解题方法、思路进行总结及梳理。
(三)概念图在课后复习中的有效应用
复习是对所有知识点进行巩固和深化的过程,初中生接受新事物比较快,但若不及时进行复习,便会很快遗忘。将概念图运用到复习中,不仅可以让学生及时巩固所学知识,还能帮助他们找到自己的薄弱环节。在复习过程中,学生会发现自己对很多知识点的掌握还不够牢固,可以按照概念图进行查漏补缺,有针对性地进行复习,提高复习效率。
在初中数学复习教学中,概念图有着广泛的应用空间。例如,在“函数及其图象”一章的课后复习中,教师可运用概念图,帮助学生理解函数的常量与变量、自变量的取值范围、函数值等有关概念,以及解析法、列表法、图象法等函数表示法,三类基本函数的解析式及函数图象中各变量之间的联系。同时,教师可运用概念图将应用函数解析式画图象的步骤进行诠释,包括列表、描点、连线。
又如,复习“二次函数”一节时,其概念图的表示可分为四部分进行归纳:二次函数的概念、图象及性质、二次函数与一元二次方程的关系、利用二次函数来解决实际问题。
结 语
综上所述,初中数学教学需要教师从多方面加以考虑,以更好地提升学生的综合能力。而在初中数学教学中应用概念图,可以在让学生理解数学相关概念的基础上,培养学生的数学思维,使其感受到数学的魅力,从而更好地学习数学知识。
[参考文献]
陈应潭.概念图在初中数学教学中的有限应用探析[J].考试周刊,2020(25):69-70.
作者簡介:张雅贞(1971.8-),女,福建霞浦人,一级教师。
关键词:概念图;初中数学;教学实践;有效应用
中图分类号:G427 文献标识码:A 文章编号:2095-9192(2021)03-0021-02
引 言
数学是一门强调逻辑性和抽象性的学科,很多时候数字与图形之间有着千丝万缕的联系,在教学中合理使用“概念图”可以让教学内容更加直观、简单、明确,也能有效帮助学生梳理知识点,以达到最大限度提升教学效果的作用。本文从概念图的优势和特点出发,分析如何提高初中数学教学效率。
一、认识、发挥概念图的优势
初中数学教学包含大量的数字和数学符号,概念图作为构建知识体系的工具,可以将不同的数学概念逻辑性地联系起来,并标注出不同图形、数字之间的关系,其中也包含各个节点,每个节点都是一个新的数学概念,对数学框架内的知识进行总结和归类划分[1]。教师单纯依靠文字性描述或理论讲解,很难让学生形成相关思维。概念图明确指出不同知识点之间的联系和客观事实,对教师的教学实践有非常重要的现实意义,能够有效辅助教师为学生梳理知识框架结构。
二、概念图在初中数学教学中的有效应用策略
(一)概念图在预习过程中的有效应用
预习是初中数学学习过程中的重要环节,学生通过预习可以理解教师讲解的数学知识。学生可以预先进行热身,并对其中的知识点进行自主思考和分析,将思考后的内容转化为自己的理解并进行记录,结合教师课堂上的讲解更好地内化知识。因此,在学生预习前,教师可提前发放相应知识的概念图,让学生自己画出相应章节的概念图,使学生对本节内容有更清晰的理解,并受到更直观的学习指引。同时,在概念图中明确标注重点和难点,可以让学生作为参考,从而更加合理地分配预习时间,在预习过程中将自己的概念图和教师的概念图进行对比,记录下自己不理解的地方,为接下来的课堂学习做好铺垫。
例如,在学习“一元一次方程”这节课之前,教师可让学生先进行自主预习,对一元一次方程有大致的认识、理解;再让学生自己构建“一元一次方程”的概念图。需要注意的是,教师发给学生的“一元一次方程”概念图不仅要有方程的概念、等式的性质及一元一次方程的形式,更要体现解一元一次方程的步骤。最后,教师让学生将自己的概念图与教师的概念图进行对比,使学生更加深刻地认识一元一次方程,有效发挥预习的作用。
(二)概念图在课堂教学中的有效应用
初中数学具有抽象性和逻辑性的特征,其知识点也更加复杂化和多样化,学生容易将一些概念、公理、定理混淆。因此,在课堂教学中学生需要根据教师的引导进行思考,而有效利用概念图可以帮助学生很好地解决问题。概念图可以让学生找到不同知识点之前的联系,简化教学内容,教师不必逐一为学生梳理不同知识点之间的关系。学生可以根据概念图厘清本节课的教学思路,从而将更多精力放在知识拓展、能力提升等方面。同时,概念图可以帮助学生构建数学框架和梳理知识脉络。
例如,在教学“实数”时,教师可以在课堂上运用概念图,帮助学生从实数的概念、实数的分类、实数与数轴的关系、实数的有关性质和实数的运算五个方面更好地认识实数,有效帮助学生掌握实数的概念,提升学习效率。
此外,概念图在几何教学中也具有积极作用,教师可以利用概念图讲解几何例题,帮助学生更好地理解相关知识。例如,在学习“相似三角形”时,教师可以创设情境,让学生测量一座建筑物的高度:假设工作人员在水平位置上选择了A、B两点进行测量,已知A点位置在建筑物顶端方向西侧偏北30°,形成仰角60°,B点位置在离建筑物顶端方向东侧偏北50°,形成仰角30°,A、B两点之间的距离为150m,那么建筑物顶端高度是多少?针对这一问题,教师可以在黑板上画出概念图的应用图示,对这一问题情境进行延伸、拓展。这样,学生能够通过不同方式解答问题,并以概念图的方式对不同的解题方法、思路进行总结及梳理。
(三)概念图在课后复习中的有效应用
复习是对所有知识点进行巩固和深化的过程,初中生接受新事物比较快,但若不及时进行复习,便会很快遗忘。将概念图运用到复习中,不仅可以让学生及时巩固所学知识,还能帮助他们找到自己的薄弱环节。在复习过程中,学生会发现自己对很多知识点的掌握还不够牢固,可以按照概念图进行查漏补缺,有针对性地进行复习,提高复习效率。
在初中数学复习教学中,概念图有着广泛的应用空间。例如,在“函数及其图象”一章的课后复习中,教师可运用概念图,帮助学生理解函数的常量与变量、自变量的取值范围、函数值等有关概念,以及解析法、列表法、图象法等函数表示法,三类基本函数的解析式及函数图象中各变量之间的联系。同时,教师可运用概念图将应用函数解析式画图象的步骤进行诠释,包括列表、描点、连线。
又如,复习“二次函数”一节时,其概念图的表示可分为四部分进行归纳:二次函数的概念、图象及性质、二次函数与一元二次方程的关系、利用二次函数来解决实际问题。
结 语
综上所述,初中数学教学需要教师从多方面加以考虑,以更好地提升学生的综合能力。而在初中数学教学中应用概念图,可以在让学生理解数学相关概念的基础上,培养学生的数学思维,使其感受到数学的魅力,从而更好地学习数学知识。
[参考文献]
陈应潭.概念图在初中数学教学中的有限应用探析[J].考试周刊,2020(25):69-70.
作者簡介:张雅贞(1971.8-),女,福建霞浦人,一级教师。