THE (u+К)-ORBIT OF ESSENTIALLY NORMAL OPERATORS AND COMPACT PERTURBATIONS OF STRONGLY IRREDUCIBLE OP

来源 :黑龙江科技学院学报 | 被引量 : 0次 | 上传用户:kupanda09
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7<
其他文献
在中考数学中,经常看到基于定弦的圆内接三角形的最大面积一类题,此類题,当动点运动到定弦所对弧的中点处时有最大面积.即有:  性质以弦AB为底,顶点在弧AB上的三角形以等腰三角形面积最大.图1  证明如图1,因为弧AB的中点P到弦AB的距离最大,故S△ABP>S△ABM.  利用此性质,可以解决与之有关的许多面积最值,现举数例:  1直接应用
填空題是中考数学试题的基本题型之一,其特点是短小精干,考查目标集中明确,且不需要过程.近年来,中考命题者又把填空题当做创新改革的“试验田”,不断出现新面孔,相继推出一些题意新颖,构思精巧,具有相当深度和明确导向的创新题型,加大了解答的难度.它不仅考查纯数学计算和概念,而且还考查数学推理、数学应用、数学思想和方法以及学生的思维过程和思维品质.既重视问题的结果,又重视学生的思考过程;既关注知识本身,又
在动态数学问题中,最值问题无疑最具魅力和挑战性,中考试卷中至少命制一道最值问题已成为共识.最值问题触及初中数学的各个角落,与切线相关的最值问题是中考命题的热点之一,也是近年中考命题的一个亮点,值得关注.  图11切线明示型  例1(2012年黄石卷)如图1所示,直线CD与线段AB为直径的圆相切于点D,并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠A
2012年中考数学连云港卷的压轴题是一道动态探究性试题.根据阅卷组的统计,该题作为一道总分12分的探究题,全市平均得分仅为0.88,换算成难度系数的话,约为0.07!这个结果严重超
一元一次方程是初中学段方程的开端,它立足小学的方程初步,是有待完善之方程体系的起始,其教学关乎着整个方程体系的构建,方程的通用基础知识在此集中体现,是对方程具有统帅
新修订的课程标准提出“使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程”.可见对数学情境的关注是新课程教学模式构建中的核心话题之一.数学情境是含有相关数学知识和数学思想方法的情境,同时也包括数学知识产生的背景.它不仅能激发数学问题的提出,也能为数学问题的提出和解决提供相应的信息和依据.  从有意义的情境中获得的课堂知识,比较容易成为可迁移的知识,因为情境为这些知识的运用
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
《中学教学杂志》2012年第8期刊登了曹嘉兴老师的“坎迪定理的等价命题”(文[1]),间接地证明了闻名中外的经典数学名题——蝴蝶定理.它是世界数学宝库中的一颗明珠,自1815年问世近200年来,广泛博得许多数学家和爱好者的青睐,纷纷对其研究推广,先后发现了坎迪定理,三翅、圆外、椭圆、筝形等蝴蝶定理(文[2]和文[3]).而我独辟蹊径,发现了它的近支——圆的双切线不完全对称蝴蝶定理(如图1,P为蝶心
何谓一堂数学好课,虽然没有确切定义,但有学者与同行提出了许多自己的见解.像安淑华、吴仲和根据美国多种评价数学课的方法,得出应从相关性、联系性、平衡性、有序性、多元性
有一次,爱因斯坦(Albert Einstein,1879—1955)病了,他的一位朋友来看他,为了帮他消磨时间,给他出了一道题目:钟表上的时针和分针,在何时可以对调,使得对调后仍然能指示实际可能的时刻?  爱因斯坦边听边想,回答说:“是的,这对病在床上的人的确是一个很好的问题,够有趣味而又不太容易.只是恐怕消磨不了多少时间,我已经快要解出来了.”  说着,爱因斯坦从床上坐起来,在纸上勾勾画画演算