论文部分内容阅读
通过理论推导证明了信号功率波形自相关函数中包含一个脉冲,利用该脉冲位置可以估计信道色散的大小。在此基础上,给出了用于相干接收系统的色散监测算法。搭建了112Gb/s(28GBaud)的偏分复用非归零四相相移键控(PDM-NRZ-QPSK)实验系统对此方法进行了验证。并利用OptiSystem和Matlab协同仿真,搭建了56Gb/s的单偏振四相相移键控(QPSK)和112Gb/s偏分复用四相相移键控(PDM-QPSK)仿真系统,分析了该方法对非归零(NRZ)、归零67(RZ67)、归零50(RZ50)、归零33(RZ33)等不同码型的适用性。实验和仿真结果与理论推导一致,证明了该方法的可行性。实验监测误差小于275ps/nm,仿真监测误差小于185ps/nm。
The theoretic deduction proves that the signal power waveform autocorrelation function contains a pulse, and the pulse position can be used to estimate the channel dispersion. On this basis, the dispersion monitoring algorithm for coherent receiving system is given. A 112Gb / s (28GBaud) PDM-NRZ-QPSK experimental system was built to verify this method. The simulation system of 56Gb / s single-polarization four-phase shift keying (QPSK) and 112Gb / s partial differential multiplexing four-phase shift keying (PDM-QPSK) was established by using OptiSystem and Matlab co-simulation. Methods The applicability of different patterns such as NRZ, RZ67, RZ50, RZ33 and so on were studied. The experimental and simulation results are consistent with the theoretical derivation, which proves the feasibility of this method. The experimental monitoring error is less than 275ps / nm, the simulation monitoring error is less than 185ps / nm.