论文部分内容阅读
谱聚类算法存在两个不足:a)将图的构造与谱分解割裂成两个独立的阶段,导致了结果的次优性;b)常用的基于l_2范数度量谱特征向量的相似性具有噪声敏感性。为了克服上述两点不足,提出基于联合结构化图学习与l_1范数谱嵌入的鲁棒聚类算法(记为CLRL1)。在该算法框架下,一方面图的学习过程与聚类过程可以有效结合起来进行协同优化,另一方面l_1范数的使用可以很好地约束谱特征向量的相似性以提升算法的鲁棒性。在多个常用数据集上进行的实验结果表明,改进算法聚类性能得到了明显提升。