论文部分内容阅读
用微分方程定性理论结合数值模拟方法研究了一类非线性Boussinesq方程的有界行波.在r〉0的条件下,首先把Boussinesq方程转换成一个常微平面系统.然后用定性理论讨论该平面系统的奇点性质,得到了该系统的相图分支,根据相图给出了有界行波的存在条件,并求出了有界行波的解.最后用数学软件Maple对行波方程进行数值模拟,得到了有界行波的平面模拟图.数值模拟和理论分析结果是一致的.