论文部分内容阅读
为解决分类器训练过程中由于无标记数据的引入,容易产生噪音、降低分类精度的问题,提出了基于遗传算法的噪声过滤协同训练算法(CGA)。充分利用遗传算法的寻优功能,产生高适应度的分类规则,达到辅助协同训练算法挑选有价值的无标记数据,降低噪音的引入,确保参与协同训练分类器的精度和性能得到有效更新的目的。在UCI数据集上的实验验证了该算法的有效性。