论文部分内容阅读
代价是现实数据的重要方面.数据的测试代价与数据的误差范围,即数据的粒度紧密相关,而误分类代价又跟测试代价有关,已有的属性选择方法往往忽视了这一点.为了处理这种情况,提出了一种基于误差范围和可变代价的最优属性子集选择方法.首先建立了该方法的理论框架,再设计了相应算法.在该方法中,测试代价和误分类代价根据不同的误差置信水平自适应地生成.再以最小化平均总代价为目标进行属性选择,从而得到最优的属性子集和误差置信水平.实验结果验证了所提方法的有效性.