渐近非扩展映象的具误差的Ishikawa迭代序列的新强收敛定理

来源 :应用泛函分析学报 | 被引量 : 0次 | 上传用户:ycgwx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
使用新的证明方法,在去掉数列{αn}单调递减的条件下,建立了一致凸Banach空间中的渐近非扩展映象不动点的具误差的Ishikawa迭代序列的新强收敛定理.其结果推广和改进了Schu,Rhoades及周海云等作者的相关结果.
其他文献
在无穷维Hillbert空间中研究了一类单调型变分不等式,把求单调型变分不等式解的问题转化为求强单调变分不等式的解,建立了一种新的迭代算法,并证明了由算法生成的迭代序列强
使用锥理论及单调迭代技术,首先讨论了Banach空间中一阶积分-微分方程初值问题的最小最大解的存在性,并在此基础上讨论了带有一阶微分项的二阶积分-微分方程初值问题的最小最
对Banach空间中奇摄动非线性微分方程的边值问题,当空间弱序列完备时,证明存在单调序列{Vn}和{un}分别一致收敛于两点边值问题的最大解和最小解.