论文部分内容阅读
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara’s 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h~(1+min){α,1}) is established for both the displacement approximation in H~1-norm and the stress approximation in L~2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara’s 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O (h ~ (1 + min) {α, 1}) is established for both the displacement approximation in H ~ 1-norm and the stress approximation in L ~ 2-norm under a mesh assumption, where α> 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown as be asmptotically exact. Numerical experiments confirm the theoretical results.