论文部分内容阅读
为保证农业物联网传感器的数据感知质量,构建了基于滑动窗口和预测模型(支持向量回归、K近邻、梯度提升回归和随机森林)的异常农情数据在线检测框架,提出了基于数据特征的滑动窗口尺寸计算方法,运用熵权逼近最优排序法评价预测模型适用性。采用羊圈环境数据(空气温度、相对湿度、CO_2和H_2S体积分数)进行试验,结果表明,滑动窗口尺寸计算方法优于仅基于采样间隔和特征周期的计算方法;模型预测误差与其异常检测性能负相关,且对误检率影响更大;支持向量回归模型对空气温度和相对湿度异常数据检测适用性最好,贴近度达0.8以