论文部分内容阅读
摘要:科技的快速进步催生了品种众多的高分子材料,其功能与性能的指标范围都非常宽泛。作为工程建筑领域使用的结构材料,它们的比强高、密度轻、具有较好的加工性、耐腐蚀、易于加工成形,能够制作成形状复杂的零部件、具有较高的摩擦性能,容易满足各种摩擦条件的需要;具有可染色性、减震性、密封性与绝缘性等多种特征。
关键词:高分子材料;工程应用;发展趋势
中图分类号:TQ316;文献标识码:A
引言
材料科学是由固体物理学、晶体学、金属学、陶瓷学、高分子科学、电子材料学、建筑材料学等分散学科的相关内容交叉渗透而形成的统一体系。随着现代仪器的发展,微观测试手段的进步,对物质微观结构的深人认识,促使了材料科学的发展和形成。材料科学的进展源于高新技术对高性能材料的需求;反之,某种高性能新材料的开发,又推动相关科技领域的进一步发展。
1高分子材料工程的應用
1.1直接节能型高分子材料
这种材料可以用作建筑外墙的结构保温涂料或者材料,具有较强的保温效果,而且还具备了良好的防火、防水性能,具有优良的化学稳定性,较低的膨胀率与较长的使用寿命等多种性能。经常被用作建筑外墙的若干保温高分子材料如下所示:酚醛树脂聚氨酯与高分子包覆的有关相变复合材料。它们既能够有效地满足建筑工程的安全性能与保温效果,又便于施工等。
再者,硬质聚氨酯泡沫塑料的闭孔率超过了90%,孔洞中充满了一氟二氯乙烷与二氧化碳等,发泡剂,它们的导热率都比较低。在完成了现场喷涂聚氨酯后,通常情况下导热率维持在0.020W/(m·K),即便老化以后,它的导热率仍然比较稳定,大致处于0.023W/(m·K)的水平,它的保温效果在很大程度上超过了其他材料。聚氨酯材料的疏水性能非常出色,它具有较高的闭孔率,水分不容易进入到材料内部中,防水性能非常优异,能够预防材料遇水膨胀的问题,可以确保它拥有稳定的尺寸。这种材料的黏附性能十分优越,它和纤维板、胶合板、木板、混凝土、金属板等材料的黏附强度,在很大程度上超过了聚氨酯泡沫材料的实际撕裂强度。在在建筑工程的施工过程中,便于操作,不要求非常严格的施工环境。
1.2间接节能型高分子材料
此类材料能够减少高分子材料所需要的生产成本,切实增加材料本身的使用寿命等,以节约能源资源,提升以往的高分子材料的化学稳定性、耐水性、加工性、抗菌性、耐老化性等,以实现节能木板。
以纳米氧化锌、纳米二氧化钛与纳米银复合而成的高分子杂化材料,和末端为吡啶盐烷烃长支链、季磷盐、季铵盐的高分子材料,具有较强的抗菌性能。此类材料会被用做外墙、管道、内墙所需要达到涂料,在湿度较大的条件下,能够显著地改进材料易于霉变的状况,切实增加它的使用寿命。压缩材料的实际成型时间,或削减材料成型所需要的条件,这些都输间接性地减少能耗的手段之一,紫外光固化的相关涂料具有较快的固化速度,而且具有优良的稳定性、光学、力学性能,因此这种高分子材料具有非常广泛的应用前景。
1.3功能性节能或储能高分子材料
此类高分子材料运用在建筑工程中,主要是热致变色型高分子材料与聚合物太阳能电池。前者对温度非常敏感,是非常具有代表性的功能性节能材料,重点用来制作建筑物的外墙与屋顶的涂料。后者是把光能转换为电能,而且将这些电脑储存起来,能够为室内提供充足的电力支持,能够用在玻璃、外墙、屋顶等多个领域。
最近若干年来,聚合物太阳能电池持续地提升了光电的实际转换效率,澳大利亚的相关设计师与2014年设计出了绿叶型聚合物太阳能电池,它的光电转换效率业已超过了11.00%,而且便于人们使用此类太阳能电池,只要它被贴在房间的玻璃窗,就能够储存一定数量的电能,为室内用电提供支持,在很大程度上促进了这类电池运用在建筑工程方面的进展。
作为热致变色高分子材料,聚N-异丙基丙烯酰胺的相转变温度大致达到了31.5℃。在低于相转变温度的情况下,其内部氢键的密度超过了范德华力的相关密度,聚合物呈现出黑色;在温度超过相转变温度后,其内部氢键循序渐进地变成了范德华力,其聚合物呈现为白色。把这种高分子材料用作外墙涂料或者屋顶材料时,冬天温度较低的情况下显示为黑色,有利于建筑物吸收更多的热量,发挥良好的保温作用。夏天温度较高时,显示为白色,有利于建筑物强化自身的表面热量反射,实现了降温的目的。和没有采用此类涂料的相关建筑物比较,冬天时此类节能型建筑的室内温度大致提高了2℃,夏天室内温度大致降低了1℃,在很大程度上削减了冬天室内供暖与夏天制冷需要的能量损耗。
1.4高分子材料成型技术的具体分析
(1)形态控制技术
高分子材料的化学结构、分子结构和凝聚态的形态结构都影响着产品的热性能、力学性能和加工性能。在高分子材料成型加工过程中加强形态的控制,避免不良的反应现象影响高分子材料成型的效果,是控制技术中尤其重要的部分。高分子材料的形态结构与加工工艺存在着必然的联系,因为大多数的高分子聚合物外相体系是不相容的,在众多的高分子聚合物混合加工的过程中,对产品的稳定性和形态控制技术要求非常高,为提高聚合物体系的相容性增强其稳定性,采用加入第三组分的方式改善相容性。
(2)温度控制技术
在高分子材料聚合物加工过程中,温度是重要的影响因素。在聚合物反应的过程中不同的位置和时间,对温度都有不同的要求,随着时间和位置的变化温度的变化规律不容易进行掌握和控制,严重影响产品的性能以及使用效果。由于微纤能够对基体聚合物的结构和结晶形态产生影响,因此在高分子材料聚合物的反应过程中将导电离子组装到微纤中,形成导电三维网络结构,可以实现在微纤体系中有效地控制高分子材料产品的温度。
(3)高分子成型与控制技术的发展
高分子材料成型与控制技术不断提高,加工工艺不断得到改善,进一步提高了高分子材料的耐高温、耐老化、耐腐蚀性等高性能。由于高分子在基团和分子结构的作用下更加具有吸水、抗蚀等特定的功能。高分子材料的高性能、特定性能和生物性能,成为未来高分子成型与控制技术主要的研究和发展方向。
2高分子材料在工程建筑中的发展趋势
人们对工作环境与居住环境提出了越来越高的要求,因此应该结合上述要求,持续地改进和研发高分子技术,制造出更高性能的高分子材料。要设计出有利于优化设计,提升建筑施工效果的高分子材料。持续地完善高分子材料的具体运用方法,打造产学研与建筑实务一体化的高分子材料运用研究体系。努力地培养高质量的高分子材料专业人才,设计出能够运用到建筑工程诸多领域的此类材料,而不能只局限于室内设计与粉刷涂漆方面。还要结合国内外建筑行业的最新发展趋势,有针对性地创新高分子材料,要结合建筑工程的具体情况,搭配个性化、针对性的高分子材料,充分地利用室内外空间。
结束语
从上文分析可以看出,各种类型的高分子材料性能和功能日益增强,它们具有良好的化学稳定性、易加工、质量轻,而且还具备了环境敏感、光电转化、隔热保温等多种功能,在建筑工程领域中的应用前景必将越来越广泛。
参考文献:
[1] 曹亚,张熙,李惠林,等.高分子材料在采油工程中的应用与展望[J].油田化学,2013,20(1):94-97.
[2] 汪华莉.节能型高分子材料在建筑工程领域的应用[J].合成树脂及塑料,2016,33(3):89-92.
[3] 刘成.浅谈高分子材料成型及其控制技术[J].化工管理,2016(36):106.
[4] 雷玉臣,唐刚.浅谈高分子材料成型及其控制技术[J].科技创新与应用,2015(11):124.
(作者身份证号:130928198306256510)
关键词:高分子材料;工程应用;发展趋势
中图分类号:TQ316;文献标识码:A
引言
材料科学是由固体物理学、晶体学、金属学、陶瓷学、高分子科学、电子材料学、建筑材料学等分散学科的相关内容交叉渗透而形成的统一体系。随着现代仪器的发展,微观测试手段的进步,对物质微观结构的深人认识,促使了材料科学的发展和形成。材料科学的进展源于高新技术对高性能材料的需求;反之,某种高性能新材料的开发,又推动相关科技领域的进一步发展。
1高分子材料工程的應用
1.1直接节能型高分子材料
这种材料可以用作建筑外墙的结构保温涂料或者材料,具有较强的保温效果,而且还具备了良好的防火、防水性能,具有优良的化学稳定性,较低的膨胀率与较长的使用寿命等多种性能。经常被用作建筑外墙的若干保温高分子材料如下所示:酚醛树脂聚氨酯与高分子包覆的有关相变复合材料。它们既能够有效地满足建筑工程的安全性能与保温效果,又便于施工等。
再者,硬质聚氨酯泡沫塑料的闭孔率超过了90%,孔洞中充满了一氟二氯乙烷与二氧化碳等,发泡剂,它们的导热率都比较低。在完成了现场喷涂聚氨酯后,通常情况下导热率维持在0.020W/(m·K),即便老化以后,它的导热率仍然比较稳定,大致处于0.023W/(m·K)的水平,它的保温效果在很大程度上超过了其他材料。聚氨酯材料的疏水性能非常出色,它具有较高的闭孔率,水分不容易进入到材料内部中,防水性能非常优异,能够预防材料遇水膨胀的问题,可以确保它拥有稳定的尺寸。这种材料的黏附性能十分优越,它和纤维板、胶合板、木板、混凝土、金属板等材料的黏附强度,在很大程度上超过了聚氨酯泡沫材料的实际撕裂强度。在在建筑工程的施工过程中,便于操作,不要求非常严格的施工环境。
1.2间接节能型高分子材料
此类材料能够减少高分子材料所需要的生产成本,切实增加材料本身的使用寿命等,以节约能源资源,提升以往的高分子材料的化学稳定性、耐水性、加工性、抗菌性、耐老化性等,以实现节能木板。
以纳米氧化锌、纳米二氧化钛与纳米银复合而成的高分子杂化材料,和末端为吡啶盐烷烃长支链、季磷盐、季铵盐的高分子材料,具有较强的抗菌性能。此类材料会被用做外墙、管道、内墙所需要达到涂料,在湿度较大的条件下,能够显著地改进材料易于霉变的状况,切实增加它的使用寿命。压缩材料的实际成型时间,或削减材料成型所需要的条件,这些都输间接性地减少能耗的手段之一,紫外光固化的相关涂料具有较快的固化速度,而且具有优良的稳定性、光学、力学性能,因此这种高分子材料具有非常广泛的应用前景。
1.3功能性节能或储能高分子材料
此类高分子材料运用在建筑工程中,主要是热致变色型高分子材料与聚合物太阳能电池。前者对温度非常敏感,是非常具有代表性的功能性节能材料,重点用来制作建筑物的外墙与屋顶的涂料。后者是把光能转换为电能,而且将这些电脑储存起来,能够为室内提供充足的电力支持,能够用在玻璃、外墙、屋顶等多个领域。
最近若干年来,聚合物太阳能电池持续地提升了光电的实际转换效率,澳大利亚的相关设计师与2014年设计出了绿叶型聚合物太阳能电池,它的光电转换效率业已超过了11.00%,而且便于人们使用此类太阳能电池,只要它被贴在房间的玻璃窗,就能够储存一定数量的电能,为室内用电提供支持,在很大程度上促进了这类电池运用在建筑工程方面的进展。
作为热致变色高分子材料,聚N-异丙基丙烯酰胺的相转变温度大致达到了31.5℃。在低于相转变温度的情况下,其内部氢键的密度超过了范德华力的相关密度,聚合物呈现出黑色;在温度超过相转变温度后,其内部氢键循序渐进地变成了范德华力,其聚合物呈现为白色。把这种高分子材料用作外墙涂料或者屋顶材料时,冬天温度较低的情况下显示为黑色,有利于建筑物吸收更多的热量,发挥良好的保温作用。夏天温度较高时,显示为白色,有利于建筑物强化自身的表面热量反射,实现了降温的目的。和没有采用此类涂料的相关建筑物比较,冬天时此类节能型建筑的室内温度大致提高了2℃,夏天室内温度大致降低了1℃,在很大程度上削减了冬天室内供暖与夏天制冷需要的能量损耗。
1.4高分子材料成型技术的具体分析
(1)形态控制技术
高分子材料的化学结构、分子结构和凝聚态的形态结构都影响着产品的热性能、力学性能和加工性能。在高分子材料成型加工过程中加强形态的控制,避免不良的反应现象影响高分子材料成型的效果,是控制技术中尤其重要的部分。高分子材料的形态结构与加工工艺存在着必然的联系,因为大多数的高分子聚合物外相体系是不相容的,在众多的高分子聚合物混合加工的过程中,对产品的稳定性和形态控制技术要求非常高,为提高聚合物体系的相容性增强其稳定性,采用加入第三组分的方式改善相容性。
(2)温度控制技术
在高分子材料聚合物加工过程中,温度是重要的影响因素。在聚合物反应的过程中不同的位置和时间,对温度都有不同的要求,随着时间和位置的变化温度的变化规律不容易进行掌握和控制,严重影响产品的性能以及使用效果。由于微纤能够对基体聚合物的结构和结晶形态产生影响,因此在高分子材料聚合物的反应过程中将导电离子组装到微纤中,形成导电三维网络结构,可以实现在微纤体系中有效地控制高分子材料产品的温度。
(3)高分子成型与控制技术的发展
高分子材料成型与控制技术不断提高,加工工艺不断得到改善,进一步提高了高分子材料的耐高温、耐老化、耐腐蚀性等高性能。由于高分子在基团和分子结构的作用下更加具有吸水、抗蚀等特定的功能。高分子材料的高性能、特定性能和生物性能,成为未来高分子成型与控制技术主要的研究和发展方向。
2高分子材料在工程建筑中的发展趋势
人们对工作环境与居住环境提出了越来越高的要求,因此应该结合上述要求,持续地改进和研发高分子技术,制造出更高性能的高分子材料。要设计出有利于优化设计,提升建筑施工效果的高分子材料。持续地完善高分子材料的具体运用方法,打造产学研与建筑实务一体化的高分子材料运用研究体系。努力地培养高质量的高分子材料专业人才,设计出能够运用到建筑工程诸多领域的此类材料,而不能只局限于室内设计与粉刷涂漆方面。还要结合国内外建筑行业的最新发展趋势,有针对性地创新高分子材料,要结合建筑工程的具体情况,搭配个性化、针对性的高分子材料,充分地利用室内外空间。
结束语
从上文分析可以看出,各种类型的高分子材料性能和功能日益增强,它们具有良好的化学稳定性、易加工、质量轻,而且还具备了环境敏感、光电转化、隔热保温等多种功能,在建筑工程领域中的应用前景必将越来越广泛。
参考文献:
[1] 曹亚,张熙,李惠林,等.高分子材料在采油工程中的应用与展望[J].油田化学,2013,20(1):94-97.
[2] 汪华莉.节能型高分子材料在建筑工程领域的应用[J].合成树脂及塑料,2016,33(3):89-92.
[3] 刘成.浅谈高分子材料成型及其控制技术[J].化工管理,2016(36):106.
[4] 雷玉臣,唐刚.浅谈高分子材料成型及其控制技术[J].科技创新与应用,2015(11):124.
(作者身份证号:130928198306256510)