论文部分内容阅读
Two unconventional nano-aperture light sources, an L-shaped nano-aperture source and a 3D nano-aperture source for high-density optical data storage, are numerically investigated. With incidence of a Gaussian beam, the spot size of the Poynting vector coupled into the recording medium is 130 × 175 nm2 for the L-aperture and 120 × 135 nm2 for the 3D nano-aperture. The quantitative analyses indicate that the unconventional nanoaperture sources can provide enough power density to record marks in the commercial recording medium. It is feasible to use a laser diode with a nano-aperture as an active nanometer light source for high-density optical data storage.