论文部分内容阅读
基于 SVM理论的分类器已经发展成为一种通用的二值分类器 .但是它对噪音数据非常敏感 ,而且不适用于多值分类场合 .将标准的 PCA算法扩展到更普遍的领域 ,并提出了一种新的 SVM分类器学习结构 .它使用扩展的 PCA算法对训练集数据进行降噪映射 ,产生一个新的数据集 ,然后通过反对称阵将一组二值分类器组合成一个多值分类器来处理该数据集 .理论分析和试验表明该分类器学习效率高并具有很强的容噪性能