论文部分内容阅读
论文基于2003—2014年水文资料,采用长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了汉江上游安康站日径流预测模型,评价了不同输入条件下日径流预测的精度。结果表明:当预见期为1 d时,在仅以安康站前期日径流量作为输入的条件下,LSTM模型在训练期和检验期的效率系数分别达到0.68和0.74;如再将流域前期面雨量和上游石泉站前期日径流量加入LSTM网络作为输入变量,安康站日径流量预测效果将更好,训练期和检验期的效率系数最高可达到0.83和0.84,均方根误差也有